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for a Quantum Logic
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In this paper we will study a function of simultaneous measurements for quantum events
(s-map) which will be compared with the conditional states on an orthomodular lattice

as a basic structure for quantum logic. We will show the connection between s-map and

a conditional state. On the basis of therfgi approach to the conditioning, conditional
states, and the independence of events with respect to a state are discussed. Observe that
their relation of independence of events is not more symmetric contrary to the standard
probabilistic case. Some illustrative examples are included.
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1. INTRODUCTION

Conditional probability plays a basic role in the classical probability theory.
Some of the most important areas of the theory such as martingales, stochastic
processes rely heavily on this concept. Conditional probabilities on a classical
measurable space are studied in several different ways, but result in equivalent
theories. The classical probability theory does not describe the causality model.

The situation changes when nonstandard spaces are considered. For example,
it is well known that the set of random events in quantum mechanics experiments
is a more general structure than Boolean algebra. In the quantum logic approach
the set of random events is assumed to be an orthomodular lattice (QML)
Such model we can find not only in the quantum theory, but also for example, in
economics, biology, etc. We will show such a simple situation in Example 1.

In this paper we will study a conditional state on an OML using Renyi’s
approach (or Bayesian principle). This approach helps us to define independence
of events and differently from the situation in the classical theory of probability,
if an eventa is independent of an evebf then the evenib can be dependent on
the eventa (problem of causality) (Efésiowd, 1998, 2001). We will show that
we can define as-map (function for simultaneous measurements on an OML).
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It can be shown that if we have the conditional state we can define-thap
and conversely. By using themap we can introduce joint distribution also for
noncompatible observables on an OML. Moreoverx ifs an observable ok
and B is Boolean subalgebra @f, we can construct an observalzde- E(x|B),
which is a version of conditional expectationxobut it need not to be necessarily
compatible withx.

Example 1. Assume that there are four objects, U), (A, V), (C,U), (C, V)

under experimental observations, but because of the nature of experimental device
we are able to identify only one constituent of the pair. Thus, the possible outcomes
of our experiment aré\, C, U, V, and if the outcome is (say) then we do not

know whether it comes from the paiA(U) or from (A, V). In other words we

can always observe only one characteristic feature of each object:

A=A U)=1(A V) C =M1(C,U)=111(C, V)
U = Ix(A, U) = I12(C, U) V =TIx(A, V) =T1(C, V)
wherell;, i =1, 2 present some “state” of our system. In such situation, for exam-

ple, we ask about the probability &fif propertyU has been detected; equivalently
we ask about the value ¢f(A|U).

2. ACONDITIONAL STATE ON AN OML

In this part we introduce the notions as an OML, a state, a conditional state,
and their basic properties.

Definition 1.1. Let L be a nonempty set endowed with a partial orderng.et

there exist the greatest element (1) and the smallest element (0). Let there be
defined the operations supremum)(infimum A (the lattice operations) and a
map.L : L — L with the following properties:

(i) Forany{an}nca € L, whereA c A are finite

\/ a, Nanel.
neA ne A
(i) Foranyace L(at)* =a.
(i) If aeL,thenavat=1.
(iv) If a,b e L suchthata < b, thenb* < at.
(v) If a, b e L such thats < bthenb = a v (a* A b) (orthomodular law).

Then (., 0, 1,v, A, 1) is called the orthomodular lattlice (briefly OML).
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Let L be OML. Then elements, b € L will be called:

e orthogonal & L b) iff a < b*;
e compatible & < b) iff there exist mutually orthogonal elemerds, b,
¢ € L such that

a=avc and b=Db;vec.

If €L foranyi =1,2,3,... andb € L is such, thabt < g for all i, then
b < \/'_, & and (Dvureenskij and Pulmannay2000; Pak and Pulmannay
1991; Varadarajan, 1968)

bA(io/aa) =<O/(a A b)

i=1

i=1

A subsetlo C L is a sublogic ofL if for any a € Lo we havea' € L and
foranya,be Lpavbe Lo.

Definition 1.2. Amapm : L — Rsuch that
(i) m(0)=0andm(1) =1.
(i) If aLbthenm(a v b) =m(a)+ m(b)

is called a state oh.. If we have orthomodulae-lattice andm is o-additive
function, therm will be called ao -state.

Definition 1.3(Narasiowd, 2001). Let. be an OML. A subset. Cc L — {0} is
called a conditional system (CS)lin(c-CS inL) if the following conditions hold:

e Ifa,belgthenavbeLe (Ifa, e Le,forn=1,2,..., then\/,a, €
Le.)
e Ifa,be L.anda< b, thenat Abe L.

Let A C L. ThenL(A) is the smallest CSs(-CS), which contains the sét

Definition 1.4(Narasiow, 2001). Lel be an OML and.. be as-CSiinL. Let
f:L x Lc— [0, 1]. If the function f fulfills the following conditions:

(C1) foreacha e Lof(., a)is a state orL;

(C2) foreacha e Lof(a,a) =1;

(C3) if {an}nea € Lo, whereA c N anda, are mutually orthogonal, then for
eachb e L

(6 Vo) = 3 (a0 Vo) 10020

ne A ne A ne A
then it is called conditional state.
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Proposition1.1.(Nanasiova, 2001). Let L be an OML. Lég}' ; € L,ne N
where a L a; fori # j. If for any i there exists a staig;, such thaw; (&) = 1,
then there exists-CS such that for anlg = (ky, ko, . . ., k,), where k € [0; 1] for
i €{1,2,...,n}with the property} ", ki = 1, there exists a conditional state

fk : L x L — [0; 1],
such that

1. foranyi and each & Lfi(d, g) = «;(d);
2. foreach a

fi <aa \/a) =k;
i=1
Definition 1.5.(Narésiowd, 2001). LetL be an OML andf be a conditional
state. Leb € L, a, ¢ € L. such thatf (c, a) = 1. Thenb is independent c& with
respect to the staté(., c)(b <y, ¢ a) if f(b,c) = (b, a).

The classical definition of independency of a probability spaze, P) is
a special case of this definition, because

P(A|B) = P(A|Q) if and only if P(AN B|2) = P(A|Q)P(B|<).

If LcbeCSandf : L x L. — [0, 1] is a conditional state, then éXasiowd,
2001)

() Letat,a,ce Le,beLandf(c,a)= f(c,at)=1.Thenb < ¢ a
if and only ifb <¢( ¢ a*.
(i) Let a,ce L, be L and f(c,a) = 1. Thenb <+ ¢ a if and only if
bt (., c)a.
(i) Leta,c,beLe, b« aandf(c,a)= f(c,b)=1. Thenb <t aif
and only ifa < ¢ b.

3. FUNCTION FOR SIMULTANEOUS MEASUREMENT ( s-MAP)
Definition 2.1. Let L be an OML. The map : L x L — [0, 1] will be called
s-map if the following conditions hold:

(s1) p(1,1)=1;
(s2) ifa_Lb,thenp(a, b) =0;
(s3) ifaLb,thenforany e L,

p(av b, c) = p(a c)+ p(b, c)
p(c,a v b) = p(c, &) + p(c, b)
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Proposition2.1. Let L be an OML and let p be a s-map. Letac € L, then
1. ifa < b, then ga, b) = p(a A b, a A b) = p(b, a);
2. ifa < b, then ga, b) = p(a, a);
3. ifa < b, then da, c) < p(b, ¢);
4. p(a, b) = p(b, b);
5. if v(b) = p(b, b), thenv is a state on L.
Proof:
(1) Ifa < b,thena=(anb)v(@aabt)ando = (bra)v(baat).Hence
p(a, b) = p((@aAb) v (aAbh),b)
= p(aAb,b)+ p(anbt,b)= p@nb,b).
Analogously
p@nb,b)=p@@aab, (bra)v(bnaat)
=pbarabra)+pbarabarat)=pbnaa baa).
Hence
p(a, b) = p(aAb,aADb).
(2) If a < b, thena < b. Hence
p(a, b) = p(a,a A b) = p(a, a).
(3) If a < b, thenb =a v (a* A b). Hence
p(b, c) = p(a Vv (a* A b),c)
= p(a,c) + p(a- A b, a)p(a, c)
(4) From (3) and (2) it follows
p(b, b) = p(1, b)p(a, b).
Hence we get
p(b, b)p(a,b) foreach a,belL.
(5) Letv:L — [0, 1], such that(b) = p(b, b). Then
v(0) = p(0, 0)= 0.
Leta_L b, then
v(@avb)=p@vhb,avb)=plaavb)+ pb avb)
= p(a, @) + p(a, b) + p(b, a) + p(b, b)
= p(a, a) + p(b, b) = v(a) + v(b).
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From the definition we have thaf{l) = p(1, 1) = 1. From this it follows that is
a state orL. O

Proposition2.2. Let L be an OML, let there be an s-map p. Then there exists a
conditional state §, such that

p(av b) = fp(av b) fp(b, l)

LetLbeanOMLandletl=L —{0}. If f : L x L — [0, 1] is a condi-
tional state, then there exists an s-map:- x L — [0, 1].

Proof: Letpbears-map.LetL;={beL;p(b,b)#0}.Letfy:LxL:— R
such that

(. b)
p(b, b)’

From the Proposition 2.1 (3) it follows that for aaye L andb € L:fy(a, b) €
[0, 1]. Moreover

fo(. b) =

p(Lb) _ p(b.b)
p(b.b) ~ p(b, )

and alsofy(b, b) = 1. Letc,a € L and leta_L c. Then

fp(0,0) =0 and fp(1,b)=

p@veb)  p(a b)+ p(c b)
pb,b) p(b, b)

It means that for anp € L is fy(., b) a state orL.
Leth; € L¢,i =1, 2,..., n be mutually orthogonal elements. Then for any

ael
" _ plavib) & p@ by
fp<a,\/bi> ~ p(vibi, vib) ; p(Vibi, vibi)

fpave,b)= = fp(a, b) + fu(c, b).

p(bi, vib)  p(a, by)
Z p(vibi, viby) p(oi, viby)

p(bi, vibi) p(a, bi)
Z p(vibi, viby) p(bi, by)

= Z fp(bi, vibi) f(a, by).
i1

From this it follows thatf, is the conditional state.
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Now we can compute

p(a, b) p(b, 1)
p(b, b) p(1, 1)
From the properties af-map we havep(b, 1) = p(b, b) and p(1, 1) = 1. Hence
fp(a, b) fy(b, 1) = p(a, b).
Let f be a conditional state and Iey = {b € L; f(b, 1) # 0}. Let

pr: L xL—J0,1]

fo(a, b) fp(b, 1) =

be defined in the following way:
f(a,b)f(b,1), belg
01

pf(a,b)z{ b¢L0
(sl) Because & Lgandf is a conditional state, then
p:(1,1)= (1, Df(1,1)=1.

(s2) Leta,be Landa _Lb.Ifbe Lo, thenp;(a, b) = f(a, b)f(b, 1). Because
a < bt thenf(a, b) = 0. Henceps(a,b) = 0. If b & Lo, thenps(a, b) =
0. Hence fora L bp;(a, b) = 0.

(s3) Leta, b,c e L,alb. We have to show that

pr(@vb,c)=pi(a c)+ ps(b,c) @
and

p(c,avb) = ps(c,a)+ pr(c,b). 2

(1) If c € Lo, then
ps(@avb,c)= f(avbc)f(c 1)
f(a,c)f(c,1)+ f(b,c)f(c, 1)
pt(a c) + pt(a, c).
If c & Lo, thenps(a Vv b, c) = p:(a, c) = ps(b, c) = 0. Hence
pi(avb,c)=ps(ac)+ pr(b c).

(2) In this case we have to verify for (b) the following three situations:
(i) a,b e Lo; (i) a € Lo, b & Lo; (iii) a, b & L.
(i) If a,b e Lo, then

ps(c,avb)= f(c,avb)f(avhb,1)
=(f(a,avb)f(c,a)+ f(b,avhb)f(c,b)f(avb,1)
= f(c,a)f(a,avb)f(avhb, 1)
+ f(c,b)f(b,avhb)f(avhb,1l).
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From the definition of the functiori we get
f(a,1)= f(a,avb)f(avh, 1)+ f(a (avhb):)f(@@avhb)* 1)
= f(a,avb)f(avb,1)+0.
Also
f(b,avb)f(avhb, 1)= f(b, 1)
Then
ps(c,avb)y= f(c,a)f(a,avb)f(avb,1l)
+ f(c,b)f(b,avb)f(avb,1)
= f(c,a)f(a, 1)+ f(c, b)f(b, 1)
= ps(c, @) + ps(c, b).

If ae Loandb ¢ Lganda v b € Ly, then from the definition of
a mapp; it follows p¢(c, b) = 0. From this it follows that it is
enough to show

pr(c,avhb) = ps(c a).
But
ps(c,avb)= f(c,avb)f(avb,1)
and
pi(c,a) = f(c,a)f(a, 1)
Becausef (b, 1) = 0, then
favb, 1)= f(a, 1)+ f(b,1)= f(a, 1).
On the other hand
0= f(b,1)= f(avh,1)f(b,avb)
+ f((av b)t, D)f(b, @V b)h).
Becausef (b, (a v b)') = 0, then we have
0= f(avbh,1)f(b,avh).
But f(a v b, 1) # 0 and hence
f(b,avb)=0
and so
1=f(avb,avb)=f(a,avb)+ f(b,avhb)=f(a,avbh).
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Therefore
f(c,avb)=f(a,avb)f(c,a)+ f(b,avb)f(c, b)= f(c, a).
Hence
ps(c,avb)y= f(c,avb)f(avhb,1)
= f(c,a)f(a, 1) = p:(c, a).

(iii) If a,b & Lo, thenf(a, 1) = f(b, 1) = 0. From this it follows that
f(avb,1)=0andsm Vv b ¢ Lo Hence foranyg € L

0= pt(c,avb) = pi(c,a)+ pi(c b).

Thereforep; is s-map.

Proposition2.3. Let L be an OML.

(a) If f isaconditional state, then k¢ 1) aiff ps(b, a) = pr(a, a)ps (b, b),
where py is the s-map generated by f.

(b) Let p be an s-map. Thensbyy 1) aiff p(b, a) = p(a, a) p(b, b), where
f, is the conditional state generated by the s-map p.

Proof:

(a) Letb x<y(,1ya. It means thatf(b,a) = f(b, 1). Let f(b, 1) 0 and
f(a, 1) # 0. From the previous proposition we have that

pi(b,a) = f(b,a)f(a, 1)= f(b, 1)f(a, 1).
But
p¢(d,d) = f(d,d)f(d, 1)= f(d, 1)
and hence
pt(b, &) = pr (b, b)ps(a, a).

Let f(b, 1) = 0andf (a, 1) # 0. Fromthis it follows thap; (b, b) =
f(b, 1) = 0. On the other hand

f(b,1)= f(a, 1)f(b,a)+ f(at, 1)f(b,a*) = 0.

Thereforef (b, a) = 0 and hence; (b, a) = 0. It means that in this case
pi (b, @) = pr(b, b)ps(a, a).

Let f(b,1)= f(a,1)=0. From this it follows thatf(a, 1) =
p:(a, @) = 0 = p¢(b, b) and sop; (a, a) ps (b, b) = 0. On the other hand
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ps(b,a) = f(b,a)f(a, 1)= 0. It means

bx=¢.ya implies p¢(b, a)= ps¢(a, a)ps(b, b). 3
If ps(b,a) = ps(a, a)ps(b, b), then ps(b,a) = f(a, 1)f(b, 1). It
means that

ps(b,a) = f(b,a)f(a, 1)= f(b, 1)f(a, 1).
From this it follows
f(b, 1) = f(b, a),
and so
b=<(,1a.

(b) Let p be ans-map andL, ={d € L; p(d,d) #0}. Let f,: L x L —
[0; 1] be the conditional state defined

_ plb, a)
fp(b, @) = @)’
Letb <t 1) a. It means thatf,(b, a) = fp(b, 1). Hence
_ b(b,2)
fp(b, @) = 0@ 2)
and
b, 1
fp(b, 1) = 2((1—1; = p(b, b).
Hence
b,
P — bbb
and so

p(b, a) = p(a, a) p(b, b).
On the other hand, ip(a, b) = p(a, a) p(b, b), then
p(b,a) _ p(a, a)p(b, b)

WA= a ™ raa
— p(b, b) = p(b, 1)
b, 1
- Egl, 1; = fp(b, 1).

It meansb =<+ (1) a.
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Example2.1. LetL = {a, a*, b, b*, 0, 1}. Itisclear that_isan OML. Letf (s, t)
is defined by the following way:

s/t a al b bt 1

a 1 0 04 04 04
at 0 1 0.6 06 0.6
b 0.2 11/30 1 0 0.3
bt 0.8 19/30 0 1 0.7

From f we can comput®; (s, t). Then we get

s/t a at b bt

a 04 0 0.12 0.28
at 0 0.6 0.18 0.42
b 008 022 03 O
bt 032 038 0 0.7

We can see thab; (a, b) = p¢(a, a)p; (b, b), but ps (b, a) £ p+(b, b)p;(a, a).

4. ON OBSERVABLES

Let B(R) beo-algebra of Borel sets. &-homomorphisnx : B(R) — L is
called an observable dn. If x is an observable, theR(x) := {X(E); E € F} is

called range of the observabielt is clear thatR(x) is Booleans-algebra [Var].
Let us denote(b) = p(b, b) forb € L.

Definition 3.1. LetL beas-OMLandp: L x L — [0O; 1] be ans-map. Letx, y
be some observables &n Then a mamy,y : B(R) x B(R) — [/, oc], such that

Pxy(E, F) = p(x(E), y(F)),
is called a joint distribution for the observableandy.

If Fy,y(r, S) = p(X(—o0, 1), y(—o0, ), then the functiory y is the distribu-
tion function of the observables y. Itis clear that for; < ry, thenFy y(r1, 8) <
Fyy(r2, 8).

If X is an observable oh andm is a state orL, thenmy(E), E € B(R) is
probability distribution forx and

m(x) = /R/\mx (dx)
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is called the expectation of in the statem, if the integral on the right side
exists.

Definition 3.2. Let x be an observable oh and B be a Boolean subalgebra of
L and f be conditional state oh such thatL. = L — {0}. Then the observable
will be called a conditional expectation ®fwith respect toB in the statef (., 1)

iff forany b € B — {0}

f(x,b) = f(z b).

We will denotez := E¢(x|B).

Itis clearthatifL be a Boolean algebra, thé&n (x| B) is known the conditional
expectation. The expectations»ih the state m have been studied in many papers
DvureCenskij and Pulmannay2000; Gudder, 1965, 1966, 1967, 1968, 1969,
1984; Gudder and Mullikin, 1984; Gudder and Piron, 197apdéiowd, 19874,
1993a,b; Nirdsiowd and Pulmanna;"1985; Pak and Pulmann@;1991), etc. In
the end we show that such conditional expectation can exikt on

Example 3.1. Let L be the same as in Example 2.1. We have the set

{f(,a), f(,ah), f(,b), f(,b), f(,1)

of states andBq = {0, 1,d, d'}, whered < L. Let x, z be observales oh such
that R(x) = B,;. andR(z) = By. It is easy to see, thatis not compatible wittz.
Let

X(ri) =a x(rp) =at
ZAs)=b Zs)=b"

forry, 10,81, € R
If z= E¢(x|B), then

f(x,b)= f(z,b), f(x,bY)=f(z,bY), fx 1= f(z 1)
From the definition of the expectation of an observable we have

fx,1)=rif(a, 1)+r2f(@* 1)= f(z, 1)
=sf(b, 1)+ sf(b 1),

f(x,b)=rif(ab)+raf(at,b)= f(zb)
= s f(b,b) +sf(b',b)=s,

f(x,bY) =ryf(a bt) +rof(at, bt) = f(z, bh)

=sf(b, b)) +sf(b",b")=s.
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Lets, # s,. If we put
ss=rif(a b)+raf(at, b)
and
s =rif(a, bh) +r2f(at, bh),
then
f(z,1)= s f(b 1)+ f(b* 1)
= [r1f(a, b)+r2f(a", b)]f(b, 1)
+[r1f(a, b +raf(at, bh)]f(b*, 1)
— nlf@ b)f(b, 1)+ f(a bt)f(b*, 1)]
+ro[f(at, b)f(b, 1)+ f(at, bty f(b*, 1)]
=rif(a, 1)+rof(@t, 1)= f(x, 1).

From this it follows thatz = E (x|B).
If a <t 1) b, thenf(a,b) = f(a, 1) = f(a, b'). From the definition of the
expectation of an observable we have

f(x,b)=rif(a 1)+ryf(@at, )= f(zb)= f(z, 1) =s,
fx,bY) =rif(a 1)+rf(@, )= f(zbhH)=f(z1)=s
f(x,1)=r1f(a 1)+r2f(at, 1) = f(z 1)
— s f(b, 1)+ f(bt, 1)=s(f(b, 1)+ f(b, 1)) =s.
Therefore
f(x,1)= f(x,b)=f(x,bH) = f(z. 1) =s,

thenR(z) = {0, 1} C By, z(s) = 1 and moreover = E; (X|By).

The joint distribution for the observables y is given in the 2nd table in
Example 2.1. The second and the third columns@g and the fourth and the
fifth columns arepy, .

If R(X) = B, andx(1) = a, x(2) = a*, then

f(x,1)= f(x,b) = f(x,bt) = 16.
Letz:= E¢(x|By). Hence
f(x,1)= f(z,1)= f(z b) = f(z, b') = 1.6.

ThereforeE¢(x|Bp) (1.6) = 1. (In Example 2.1 for anyl € B, — {0} and any
c e B;c =f(,1) d)
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On the other hand, leR(y) = By, y(1) = b, y(2) = b* andw := E;(y|Ba).
Hence

f(y,1)=1.7 = 0.4w; + 0.6w,

49
f(y,a)=18=wy, f(y,al)= = =w,
30
and so
49 N
Et(yIBa)(1.8) =a, E+(yIBa) 3) =2
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