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In this paper we will study a function of simultaneous measurements for quantum events
(s-map) which will be compared with the conditional states on an orthomodular lattice
as a basic structure for quantum logic. We will show the connection between s-map and
a conditional state. On the basis of the R´enyi approach to the conditioning, conditional
states, and the independence of events with respect to a state are discussed. Observe that
their relation of independence of events is not more symmetric contrary to the standard
probabilistic case. Some illustrative examples are included.
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1. INTRODUCTION

Conditional probability plays a basic role in the classical probability theory.
Some of the most important areas of the theory such as martingales, stochastic
processes rely heavily on this concept. Conditional probabilities on a classical
measurable space are studied in several different ways, but result in equivalent
theories. The classical probability theory does not describe the causality model.

The situation changes when nonstandard spaces are considered. For example,
it is well known that the set of random events in quantum mechanics experiments
is a more general structure than Boolean algebra. In the quantum logic approach
the set of random events is assumed to be an orthomodular lattice (OML)L.
Such model we can find not only in the quantum theory, but also for example, in
economics, biology, etc. We will show such a simple situation in Example 1.

In this paper we will study a conditional state on an OML using Renyi’s
approach (or Bayesian principle). This approach helps us to define independence
of events and differently from the situation in the classical theory of probability,
if an eventa is independent of an eventb, then the eventb can be dependent on
the eventa (problem of causality) (N´anásiová, 1998, 2001). We will show that
we can define ans-map (function for simultaneous measurements on an OML).
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It can be shown that if we have the conditional state we can define thes-map
and conversely. By using thes-map we can introduce joint distribution also for
noncompatible observables on an OML. Moreover, ifx is an observable onL
and B is Boolean subalgebra ofL, we can construct an observablez= E(x|B),
which is a version of conditional expectation ofx but it need not to be necessarily
compatible withx.

Example 1. Assume that there are four objects (A, U ), (A, V), (C, U ), (C, V)
under experimental observations, but because of the nature of experimental device
we are able to identify only one constituent of the pair. Thus, the possible outcomes
of our experiment areA, C, U, V, and if the outcome is (say)A then we do not
know whether it comes from the pair (A, U ) or from (A, V). In other words we
can always observe only one characteristic feature of each object:

A = 51(A, U ) = 51(A, V) C = 51(C, U ) = 51(C, V)

U = 52(A, U ) = 52(C, U ) V = 52(A, V) = 52(C, V)

where5i , i = 1, 2 present some “state” of our system. In such situation, for exam-
ple, we ask about the probability ofA if propertyU has been detected; equivalently
we ask about the value ofP(A|U ).

2. A CONDITIONAL STATE ON AN OML

In this part we introduce the notions as an OML, a state, a conditional state,
and their basic properties.

Definition 1.1. Let L be a nonempty set endowed with a partial ordering≤. Let
there exist the greatest element (1) and the smallest element (0). Let there be
defined the operations supremum (∨), infimum∧ (the lattice operations) and a
map⊥ : L → L with the following properties:

(i) For any{an}n∈A ∈ L, whereA ⊂ N are finite∨
n∈A

an,
∧
n∈A

an ∈ L .

(ii) For anya ∈ L(a⊥)⊥ = a.
(iii) If a ∈ L, thena ∨ a⊥ = 1.
(iv) If a, b ∈ L such thata ≤ b, thenb⊥ ≤ a⊥.
(v) If a, b ∈ L such thata ≤ b thenb = a ∨ (a⊥ ∧ b) (orthomodular law).

Then (L , 0, 1,∨, ∧,⊥) is called the orthomodular lattlice (briefly OML).
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Let L be OML. Then elementsa, b ∈ L will be called:

• orthogonal (a⊥ b) iff a ≤ b⊥;
• compatible (a↔ b) iff there exist mutually orthogonal elementsa1, b1,

c ∈ L such that

a = a1 ∨ c and b = b1 ∨ c.

If ai ∈ L for any i = 1, 2, 3,. . . andb ∈ L is such, thatb↔ ai for all i , then
b↔∨n

i=1 ai and (Dvureˇcenskij and Pulmannov´a, 2000; Pt´ak and Pulmannov´a,
1991; Varadarajan, 1968)

b∧
( ∞∨

i=1

ai

)
=
∞∨

i=1

(ai ∧ b)

A subsetL0 ⊆ L is a sublogic ofL if for any a ∈ L0 we havea⊥ ∈ L0 and
for anya, b ∈ L0 a ∨ b ∈ L0.

Definition 1.2. A mapm : L → R such that

(i) m(0)= 0 andm(1)= 1.
(ii) If a⊥ b thenm(a ∨ b) = m(a)+m(b)

is called a state onL. If we have orthomodularσ -lattice andm is σ -additive
function, thenm will be called aσ -state.

Definition 1.3.(Nánásiová, 2001). LetL be an OML. A subsetLc ⊂ L − {0} is
called a conditional system (CS) inL (σ -CS inL) if the following conditions hold:

• If a, b ∈ Lc, thena ∨ b ∈ Lc. (If an ∈ Lc, for n = 1, 2,. . . , then
∨

n an ∈
Lc.)
• If a, b ∈ Lc anda < b, thena⊥ ∧ b ∈ Lc.

Let A ⊂ L. ThenLc(A) is the smallest CS (σ -CS), which contains the setA.

Definition 1.4.(Nánásiová, 2001). LetL be an OML andLc be aσ -CS inL. Let
f : L × Lc→ [0, 1]. If the function f fulfills the following conditions:

(C1) for eacha ∈ L0 f (., a) is a state onL;
(C2) for eacha ∈ L0 f (a, a) = 1;
(C3) if {an}n∈A ∈ L0, whereA ⊂ N andan are mutually orthogonal, then for

eachb ∈ L

f

(
b,
∨
n∈A

an

)
=
∑
n∈A

f

(
an,

∨
n∈A

an

)
f (b, an);

then it is called conditional state.
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Proposition1.1.(Nánásiov́a, 2001). Let L be an OML. Let{ai }ni=1 ∈ L, n ∈ N
where ai ⊥aj for i 6= j . If for any i there exists a stateαi , such thatαi (ai ) = 1,
then there existsσ -CS such that for anyk = (k1, k2, . . . , kn), where ki ∈ [0; 1] for
i ∈ {1, 2,. . . , n} with the property

∑n
i=1 ki = 1, there exists a conditional state

fk : L × Lc→ [0; 1],

such that

1. for any i and each d∈ L fk(d, ai ) = αi (d);
2. for each ai

fk

(
ai

n∨
i=1

ai

)
= ki ;

Definition 1.5.(Nánásiová, 2001). LetL be an OML andf be a conditional
state. Letb ∈ L, a, c ∈ Lc such thatf (c, a) = 1. Thenb is independent ofa with
respect to the statef (., c)(b ³ f (.,c) a) if f (b, c) = f (b, a).

The classical definition of independency of a probability space (Ä, B, P) is
a special case of this definition, because

P(A|B) = P(A|Ä) if and only if P(A∩ B|Ä) = P(A|Ä)P(B|Ä).

If Lc be CS andf : L × Lc→ [0, 1] is a conditional state, then (N´anásiová,
2001)

(i) Let a⊥, a, c ∈ Lc, b ∈ L and f (c, a) = f (c, a⊥) = 1. Thenb ³ f (.,c) a
if and only if b ³ f (.,c) a⊥.

(ii) Let a, c ∈ Lc, b ∈ L and f (c, a) = 1. Thenb ³ f (.,c) a if and only if
b⊥f (., c)a.

(iii) Let a, c, b ∈ Lc, b↔ a and f (c, a) = f (c, b) = 1. Thenb ³ f (.,c) a if
and only ifa ³ f (.,c) b.

3. FUNCTION FOR SIMULTANEOUS MEASUREMENT ( s-MAP)

Definition 2.1. Let L be an OML. The mapp : L × L → [0, 1] will be called
s-map if the following conditions hold:

(s1) p(1, 1)= 1;
(s2) if a⊥ b, thenp(a, b) = 0;
(s3) if a⊥ b, then for anyc ∈ L,

p(a ∨ b, c) = p(a, c)+ p(b, c)

p(c, a ∨ b) = p(c, a)+ p(c, b)
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Proposition2.1. Let L be an OML and let p be a s-map. Let a, b, c ∈ L, then

1. if a↔ b, then p(a, b) = p(a ∧ b, a ∧ b) = p(b, a);
2. if a ≤ b, then p(a, b) = p(a, a);
3. if a ≤ b, then p(a, c) ≤ p(b, c);
4. p(a, b) ≤ p(b, b);
5. if ν(b) = p(b, b), thenν is a state on L.

Proof:

(1) If a↔ b, thena = (a∧ b)∨ (a∧ b⊥) andb = (b∧a)∨ (b∧a⊥). Hence

p(a, b) = p((a ∧ b) ∨ (a ∧ b⊥), b)

= p(a ∧ b, b)+ p(a ∧ b⊥, b) = p(a ∧ b, b).

Analogously

p(a ∧ b, b) = p(a ∧ b, (b∧ a) ∨ (b∧ a⊥))

= p(b∧ a, b∧ a)+ p(b∧ a, b∧ a⊥) = p(b∧ a, b∧ a).

Hence

p(a, b) = p(a ∧ b, a ∧ b).

(2) If a ≤ b, thena↔ b. Hence

p(a, b) = p(a, a ∧ b) = p(a, a).

(3) If a ≤ b, thenb = a ∨ (a⊥ ∧ b). Hence

p(b, c) = p(a ∨ (a⊥ ∧ b), c)

= p(a, c)+ p(a⊥ ∧ b, a)p(a, c)

(4) From (3) and (2) it follows

p(b, b) = p(1, b)p(a, b).

Hence we get

p(b, b)p(a, b) for each a, b ∈ L .

(5) Letν : L → [0, 1], such thatν(b) = p(b, b). Then

ν(0)= p(0, 0)= 0.

Let a⊥ b, then

ν(a ∨ b) = p(a ∨ b, a ∨ b) = p(a, a ∨ b)+ p(b, a ∨ b)

= p(a, a)+ p(a, b)+ p(b, a)+ p(b, b)

= p(a, a)+ p(b, b) = ν(a)+ ν(b).
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From the definition we have thatν(1)= p(1, 1)= 1. From this it follows thatν is
a state onL. ¤

Proposition2.2. Let L be an OML, let there be an s-map p. Then there exists a
conditional state fp, such that

p(a, b) = f p(a, b) f p(b, 1).

Let L be an OML and let Lc = L − {0}. If f : L × Lc→ [0, 1] is a condi-
tional state, then there exists an s-map pf : L × L → [0, 1].

Proof: Let pbe ans-map. LetLc = {b ∈ L; p(b, b) 6= 0}. Let f p : L × Lc→ R
such that

f p(., b) = p(., b)

p(b, b)
.

From the Proposition 2.1 (3) it follows that for anya ∈ L andb ∈ Lc f p(a, b) ∈
[0, 1]. Moreover

f p(0, b) = 0 and f p(1, b) = p(1, b)

p(b, b)
= p(b, b)

p(b, b)
= 1

and alsof p(b, b) = 1. Letc, a ∈ L and leta⊥ c. Then

f p(a ∨ c, b) = p(a ∨ c, b)

p(b, b)
= p(a, b)+ p(c, b)

p(b, b)
= f p(a, b)+ f p(c, b).

It means that for anyb ∈ Lc is f p(., b) a state onL.
Let bi ∈ Lc, i = 1, 2,. . . , n be mutually orthogonal elements. Then for any

a ∈ L

f p

(
a,

n∨
i=1

bi

)
= p(a, ∨i bi )

p(∨i bi , ∨i bi )
=

n∑
i=1

p(a, bi )

p(∨i bi , ∨i bi )

=
n∑

i=1

p(bi , ∨i bi )

p(∨i bi , ∨i bi )

p(a, bi )

p(bi , ∨i bi )

=
n∑

i=1

p(bi , ∨i bi )

p(∨i bi , ∨i bi )

p(a, bi )

p(bi , bi )

=
n∑

i=1

f p(bi , ∨i bi ) f (a, bi ).

From this it follows thatf p is the conditional state.
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Now we can compute

f p(a, b) f p(b, 1)= p(a, b)

p(b, b)

p(b, 1)

p(1, 1)
.

From the properties ofs-map we havep(b, 1)= p(b, b) and p(1, 1)= 1. Hence
f p(a, b) f p(b, 1)= p(a, b).

Let f be a conditional state and letL0 = {b ∈ Lc; f (b, 1) 6= 0}. Let

pf : L × L → [0, 1]

be defined in the following way:

pf (a, b) =
{

f (a, b) f (b, 1), b ∈ L0

0, b 6∈ L0

(s1) Because 1∈ L0 and f is a conditional state, then

pf (1, 1)= f (1, 1)f (1, 1)= 1.

(s2) Leta, b ∈ L anda⊥ b. If b ∈ L0, thenpf (a, b) = f (a, b) f (b, 1). Because
a ≤ b⊥, then f (a, b) = 0. Hencepf (a, b) = 0. If b 6∈ L0, thenpf (a, b) =
0. Hence fora⊥ bpf (a, b) = 0.

(s3) Leta, b, c ∈ L , a⊥ b. We have to show that

pf (a ∨ b, c) = pf (a, c)+ pf (b, c) (1)

and

pf (c, a ∨ b) = pf (c, a)+ pf (c, b). (2)

(1) If c ∈ L0, then

pf (a ∨ b, c) = f (a ∨ b, c) f (c, 1)

= f (a, c) f (c, 1)+ f (b, c) f (c, 1)

= pf (a, c)+ pf (a, c).

If c 6∈ L0, thenpf (a ∨ b, c) = pf (a, c) = pf (b, c) = 0. Hence

pf (a ∨ b, c) = pf (a, c)+ pf (b, c).

(2) In this case we have to verify for (b) the following three situations:
(i) a, b ∈ L0; (ii) a ∈ L0, b 6∈ L0; (iii) a, b 6∈ L0.

(i) If a, b ∈ L0, then

pf (c, a ∨ b) = f (c, a ∨ b) f (a ∨ b, 1)

= ( f (a, a ∨ b) f (c, a)+ f (b, a ∨ b) f (c, b)) f (a ∨ b, 1)

= f (c, a) f (a, a ∨ b) f (a ∨ b, 1)

+ f (c, b) f (b, a ∨ b) f (a ∨ b, 1).
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From the definition of the functionf we get

f (a, 1)= f (a, a∨ b) f (a∨ b, 1)+ f (a, (a∨ b)⊥) f ((a∨ b)⊥, 1)

= f (a, a ∨ b) f (a ∨ b, 1)+ 0.

Also

f (b, a ∨ b) f (a ∨ b, 1)= f (b, 1).

Then

pf (c, a ∨ b) = f (c, a) f (a, a ∨ b) f (a ∨ b, 1)

+ f (c, b) f (b, a ∨ b) f (a ∨ b, 1)

= f (c, a) f (a, 1)+ f (c, b) f (b, 1)

= pf (c, a)+ pf (c, b).

(ii) If a ∈ L0 andb 6∈ L0 anda ∨ b ∈ L0, then from the definition of
a mappf it follows pf (c, b) = 0. From this it follows that it is
enough to show

pf (c, a ∨ b) = pf (c, a).

But

pf (c, a ∨ b) = f (c, a ∨ b) f (a ∨ b, 1)

and

pf (c, a) = f (c, a) f (a, 1).

Becausef (b, 1)= 0, then

f (a ∨ b, 1)= f (a, 1)+ f (b, 1)= f (a, 1).

On the other hand

0 = f (b, 1)= f (a ∨ b, 1) f (b, a ∨ b)

+ f ((a ∨ b)⊥, 1) f (b, (a ∨ b)⊥).

Becausef (b, (a ∨ b)⊥) = 0, then we have

0= f (a ∨ b, 1) f (b, a ∨ b).

But f (a ∨ b, 1) 6= 0 and hence

f (b, a ∨ b) = 0

and so

1= f (a∨ b, a∨ b)= f (a, a∨ b)+ f (b, a∨ b)= f (a, a∨ b).
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Therefore

f (c, a∨ b)= f (a, a∨ b) f (c, a)+ f (b, a∨ b) f (c, b)= f (c, a).

Hence

pf (c, a ∨ b) = f (c, a ∨ b) f (a ∨ b, 1)

= f (c, a) f (a, 1)= pf (c, a).

(iii) If a, b 6∈ L0, then f (a, 1)= f (b, 1)= 0. From this it follows that
f (a ∨ b, 1)= 0 and soa ∨ b 6∈ L0. Hence for anyc ∈ L

0= pf (c, a ∨ b) = pf (c, a)+ pf (c, b).

Thereforepf is s-map.

¤

Proposition2.3. Let L be an OML.

(a) If f is a conditional state, then b³ f (.,1) a iff p f (b, a) = pf (a, a)pf (b, b),
where pf is the s-map generated by f .

(b) Let p be an s-map. Then b³ f p(.,1) a iff p(b, a) = p(a, a)p(b, b), where
f p is the conditional state generated by the s-map p.

Proof:

(a) Let b ³ f (.,1) a. It means that f (b, a) = f (b, 1). Let f (b, 1) 6= 0 and
f (a, 1) 6= 0. From the previous proposition we have that

pf (b, a) = f (b, a) f (a, 1)= f (b, 1) f (a, 1).

But

pf (d, d) = f (d, d) f (d, 1)= f (d, 1)

and hence

pf (b, a) = pf (b, b)pf (a, a).

Let f (b, 1)= 0 and f (a, 1) 6= 0. From this it follows thatpf (b, b) =
f (b, 1)= 0. On the other hand

f (b, 1)= f (a, 1) f (b, a)+ f (a⊥, 1) f (b, a⊥) = 0.

Therefore f (b, a) = 0 and hencepf (b, a) = 0. It means that in this case
pf (b, a) = pf (b, b)pf (a, a).

Let f (b, 1)= f (a, 1)= 0. From this it follows that f (a, 1)=
pf (a, a) = 0= pf (b, b) and sopf (a, a)pf (b, b) = 0. On the other hand
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pf (b, a) = f (b, a) f (a, 1)= 0. It means

b ³ f (.,1) a implies pf (b, a) = pf (a, a)pf (b, b). (3)

If pf (b, a) = pf (a, a)pf (b, b), then pf (b, a) = f (a, 1) f (b, 1). It
means that

pf (b, a) = f (b, a) f (a, 1)= f (b, 1) f (a, 1).

From this it follows

f (b, 1)= f (b, a),

and so

b ³ f (.,1) a.

(b) Let p be ans-map andLc = {d ∈ L; p(d, d) 6= 0}. Let f p : L × Lc→
[0; 1] be the conditional state defined

f p(b, a) = p(b, a)

p(a, a)
.

Let b ³ f p(.,1) a. It means thatf p(b, a) = f p(b, 1). Hence

f p(b, a) = p(b, a)

p(a, a)

and

f p(b, 1)= p(b, 1)

p(1, 1)
= p(b, b).

Hence

p(b, a)

p(a, a)
= p(b, b)

and so

p(b, a) = p(a, a)p(b, b).

On the other hand, ifp(a, b) = p(a, a)p(b, b), then

f p(b, a) = p(b, a)

p(a, a)
= p(a, a)p(b, b)

p(a, a)
= p(b, b) = p(b, 1)

= p(b, 1)

p(1, 1)
= f p(b, 1).

It meansb ³ f p(.,1) a.

¤
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Example 2.1. Let L = {a, a⊥, b, b⊥, 0, 1}. It is clear thatL is an OML. Let f (s, t)
is defined by the following way:

s/t a a⊥ b b⊥ 1

a 1 0 0.4 0.4 0.4
a⊥ 0 1 0.6 0.6 0.6
b 0.2 11/30 1 0 0.3
b⊥ 0.8 19/30 0 1 0.7

From f we can computepf (s, t). Then we get

s/t a a⊥ b b⊥

a 0.4 0 0.12 0.28
a⊥ 0 0.6 0.18 0.42
b 0.08 0.22 0.3 0
b⊥ 0.32 0.38 0 0.7

We can see thatpf (a, b) = pf (a, a)pf (b, b), but pf (b, a) 6= pf (b, b)pf (a, a).

4. ON OBSERVABLES

LetB(R) beσ -algebra of Borel sets. Aσ -homomorphismx : B(R)→ L is
called an observable onL. If x is an observable, thenR(x) := {x(E); E ∈ F} is
called range of the observablex. It is clear thatR(x) is Booleanσ -algebra [Var].
Let us denoteν(b) = p(b, b) for b ∈ L.

Definition 3.1. Let L be aσ -OML and p : L × L → [0; 1] be ans-map. Letx, y
be some observables onL. Then a mappx,y : B(R)× B(R)→ [′,∞], such that

px,y(E, F) = p(x(E), y(F)),

is called a joint distribution for the observablesx andy.

If Fx,y(r, s) = p(x(−∞, r ), y(−∞, s)), then the functionFx,y is the distribu-
tion function of the observablesx, y. It is clear that forr1 ≤ r1, thenFx,y(r1, 8)≤
Fx,y(r2, s).

If x is an observable onL andm is a state onL, thenmx(E), E ∈ B(R) is
probability distribution forx and

m(x) =
∫

R
λmx (dλ)
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is called the expectation ofx in the statem, if the integral on the right side
exists.

Definition 3.2. Let x be an observable onL and B be a Boolean subalgebra of
L and f be conditional state onL such thatLc = L − {0}. Then the observablez
will be called a conditional expectation ofx with respect toB in the statef (., 1)
iff for any b ∈ B− {0}

f (x, b) = f (z, b).

We will denotez := E f (x|B).
It is clear that ifL be a Boolean algebra, thenE f (x|B) is known the conditional

expectation. The expectations ofx in the state m have been studied in many papers
Dvurečenskij and Pulmannov´a, 2000; Gudder, 1965, 1966, 1967, 1968, 1969,
1984; Gudder and Mullikin, 1984; Gudder and Piron, 1971; N´anásiová, 1987a,
1993a,b; N´anásiová and Pulmannov´a, 1985; Pt´ak and Pulmannov´a, 1991), etc. In
the end we show that such conditional expectation can exist onL.

Example 3.1. Let L be the same as in Example 2.1. We have the set

{ f (., a), f (., a⊥), f (., b), f (., b⊥), f (., 1)}
of states andBd = {0, 1,d, d⊥}, whered ∈ L. Let x, z be observales onL such
that R(x) = Ba. andR(z) = Bb. It is easy to see, thatx is not compatible withz.
Let

x(r1) = a x(r2) = a⊥

z(s1) = b z(s2) = b⊥

for r1, r2, s1, s2 ∈ R.
If z= E f (x|B), then

f (x, b) = f (z, b), f (x, b⊥) = f (z, b⊥), f (x, 1)= f (z, 1).

From the definition of the expectation of an observable we have

f (x, 1)= r1 f (a, 1)+ r2 f (a⊥, 1)= f (z, 1)

= s1 f (b, 1)+ s2 f (b⊥, 1),

f (x, b) = r1 f (a, b)+ r2 f (a⊥, b) = f (z, b)

= s1 f (b, b)+ s2 f (b⊥, b) = s1,

f (x, b⊥) = r1 f (a, b⊥)+ r2 f (a⊥, b⊥) = f (z, b⊥)

= s1 f (b, b⊥)+ s2 f (b⊥, b⊥) = s2.
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Let s1 6= s2. If we put

s1 = r1 f (a, b)+ r2 f (a⊥, b)

and

s2 = r1 f (a, b⊥)+ r2 f (a⊥, b⊥),

then

f (z, 1)= s1 f (b, 1)+ s2 f (b⊥, 1)

= [r1 f (a, b)+ r2 f (a⊥, b)
]

f (b, 1)

+ [r1 f (a, b⊥)+ r2 f (a⊥, b⊥)
]

f (b⊥, 1)

= r1[ f (a, b) f (b, 1)+ f (a, b⊥) f (b⊥, 1)]

+ r2[ f (a⊥, b) f (b, 1)+ f (a⊥, b⊥) f (b⊥, 1)]

= r1 f (a, 1)+ r2 f (a⊥, 1)= f (x, 1).

From this it follows thatz= E f (x|B).
If a ³ f (.,1) b, then f (a, b) = f (a, 1)= f (a, b⊥). From the definition of the

expectation of an observable we have

f (x, b) = r1 f (a, 1)+ r2 f (a⊥, 1)= f (z, b) = f (z, 1)= s,

f (x, b⊥) = r1 f (a, 1)+ r2 f (a⊥, 1)= f (z, b⊥) = f (z, 1)= s

f (x, 1)= r1 f (a, 1)+ r2 f (a⊥, 1)= f (z, 1)

= s1 f (b, 1)+ s2 f (b⊥, 1)= s( f (b, 1)+ f (b⊥, 1))= s.

Therefore

f (x, 1)= f (x, b) = f (x, b⊥) = f (z, 1)= s,

thenR(z) = {0, 1} ⊂ Bb, z(s) = 1 and moreoverz= E f (x|Bb).
The joint distribution for the observablesx, y is given in the 2nd table in

Example 2.1. The second and the third columns arepx,y and the fourth and the
fifth columns arepy,x.

If R(x) = Ba andx(1)= a, x(2)= a⊥, then

f (x, 1)= f (x, b) = f (x, b⊥) = 1.6.

Let z := E f (x|Bb). Hence

f (x, 1)= f (z, 1)= f (z, b) = f (z, b⊥) = 1.6.

ThereforeE f (x|Bb) (1.6)= 1. (In Example 2.1 for anyd ∈ Bb − {0} and any
c ∈ Bac ³ f (.,1) d.)
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On the other hand, letR(y) = Bb, y(1)= b, y(2)= b⊥ andw := E f (y|Ba).
Hence

f (y, 1)= 1.7= 0.4w1+ 0.6w2

f (y, a) = 1.8= w1, f (y, a⊥) = 49

30
= w2

and so

E f (y|Ba)(1.8)= a, E f (y|Ba)

(
49

30

)
= a⊥.

ACKNOWLEDGMENT

This work was supported by grant VEGA1/7146/20.

REFERENCES

Aerts, D. (2001). Disjunction.Preprint.
Cassinelli, G. and Beltrameti, E. (1975). Idea, first-kind measurement in propositional state structure.

Communications in Mathematical Physics40, 7–13.
Cassinelli, G. and Truini, P. (1984). Conditional probabilities on orthomodular lattices.Reports on

Mathematical Physics20, 41–52.
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